The experimental future of ultra-high energy cosmic rays: projects and perspectives

Tiina Suomijärvi

Institut de Physique Nucléaire Université de Paris XI-Orsay, IN2P3/CNRS, Orsay, France

1

Results from Pierre Auger Observatory

- Flux suppression above 4 10^{19} eV.
- Anisotropy above about 5 10^{19} eV.
- Photon limit.
- Limit for GZK neutrinos.
- Composition (?)

Science goals for ultra-high energy cosmic rays

Centaurus A

- Identify and study nearby (<100 Mpc) cosmic-ray sources.
- Study composition.
- Particle interactions at high energy.
- Multi-messanger studies: neutrinos, photons.

Requirements

- Increase acceptance
- •Good energy and angle resolution
- Primary identification
- •Full sky coverage

Experimental strategy

- High precision measurements on the ground with increased acceptance
- Large field of view measurements from space
- Develop new air shower detection techniques

Currently used techniques

Outline

- Large acceptance ground detector: Auger North
- Large field of view space detector: JEM-EUSO
- Development of radiodetection techniques

Auger North Layout

- 4,000 SD stations cover a total area 20,000 km², rectangular grid with 2.3 km spacing
- Infill of 400 additional SD stations placed with 1.6 km spacing
- 39 FD telescopes with estimated viewing of 40 km placed in 5 buildings

Differences between Southern vs. Northern site

Design changes are driven by

- Physics goals
 - **focus** on energy > 40 EeV \rightarrow SD: larger SD spacing, improved dynamic range
- Climate / environmental differences between sites
 - **harsh** winter at Colorado \rightarrow isolation of SD tanks required
 - **a** no hills for comms tower \rightarrow sensor network topology for communication
- Advancement of technology
 - redesign of electronics for SD and FD to state-of-the-art technology
 - **use** PMT with higher Q.E. (26 % \rightarrow 35%) \rightarrow changes in FD camera
- Simplify design for lower cost at similar performance

Communication network

Communications system Architecture:

- Tank-to-tank communication with a Wireless Sensor Nets (WSN)
- Fault-tolerance by second order power chain topology (→ transmit to 2 neighbors)
- Sectors with backbone & side chains
- Terminal nodes and FD data connect to Concentrator stations; finally join the pre-existing fiber network on site

Radio transmitter hardware (=Subscriber)

- semi-custom design using commercial radio with Altera Cyclone III
- use of 4.6 GHz license-free band (US)
- antenna height about 6 m

Prototype subscriber: baseband & RF- board

Aperture and exposure

to measure up to 100 m from the shower core. 11

FD acceptance and resolutions

Research and Development Array (RDA)

- 10 SD detector stations plus 10 additional COMMS only stations
- used for test of prototypes
 - new SD tanks and electronics
 - new communication system
 - only limited physics data
- Several deployment phases
 - 1. towers / standalone masts (without comms)
 - 2. tanks without SD electronics or comms
 - 3. SD electronics and comms installed in the field \rightarrow early 2011
- train students and gain local experience

Status of Auger North

- RDA funded and will be completed early 2011
- Funding problems in US for Auger North
 - Construction in Colorado becomes difficult
 - Open site selection?
 - Revise design for potential new sites?

JEM-EUSO

 Observe ultra-high energy cosmic rays from the ISS

Success criteria

JEM-EUSO sky simulated with 1,000 events

Full success : detect more than 1000

events with energy higher than 7×10¹⁹ eV

Minimum success : 500 events

(minimum to identify sources)

Analysis of the arrival direction of particles Accuracy of the determination of the arrival direction : less than 2.5 °

Analysis of spectrum Accuracy of the energy determination : less than 30%

Identification of Hadron/ photon/ neutrino :

Accuracy of the Xmax determination: <120 g /cm²

Detection method

JEM-EUSO field of view in Nadir and Tilt Mode

- International Space Station
 - Orbiting at ~400 km
 in ±51.6 degrees latitudes
 - Covers both northern and southern hemisphere
 - Flight in varying geomagnetic field (~0.6 gauss) around orbit
 - Viewing night atmosphere in ~500 x 400 km area (nadir mode)
 - Wide FOV allows to measure entire slowly developing showers
 - Target volume exceeding an order of 10¹² tons

Exposure

19

Trigger efficiency

20

UV telescope

Mission parameters

- Time of launch:
 - Operation Period:
- Launching Rocket :
- Transportation to ISS:
- Site to Attach: Height of the Orbit:
- Inclination of the Orbit:
- Mass:
- Power:
- Data Transfer Rate: storage

year 2015 3 years (+ 2 years) H2B un-pressurized Carrier of H2 Transfer Vehicle (HTV) Japanese Experiment ~400km 51.64° 1983 kg 926 W (operative), 352 W (non-operative)

285 kpbs + on-board

Status of JEM-EUSO

JEM-EUSO has completed phase A/B with JAXA. Ready to proceed to phase B/C

Proposal to national funding agencies and institutes have been submitted and accepted or under evaluation

ESA:

Positive Recommendation in Fundamental Physics Roadmap and Astronomy WG of ESA
Approved in the research pool of ELIPSE program by Human Spaceflight Div. ESA

Launch foreseen in 2015

Radioemission from cosmic showers

First tries in the 60 with fully analogue processing chain Analogue chain worked, but analysis was difficult. From this time we have clues

on :

- Influence of the geomagnetic field
- Amplitude ~ E
- Amplitude drops exponentially with core distance

Radioemission mechanismes

Fluorescence detector like measurement with 100% duty cycle!

LOPES and CODALEMA

From LOPES and CODALEMA we know : Radio amplitude drops exponentially with lateral distance. Radio amplitude scales linearly with particle energy. Radio amplitude is strongly correlated with "geomagnetic angle". Problem : LOPES and CODALEMA are small experiments, run out of statistics at ~ 10¹⁸ eV

26

Test setup in Auger

In agreement with geomagnetic emission mechanism.

Events come from south. Agreement with a geomagnetic mechanism.

AERA Auger Engeneering Radio Array

Physics goal

Calibration of the radio emission in air-showers E > 10¹⁸. Capability of the radio detection method. Cosmic ray physics in the

transition region.

Open questions Radio-emission mechanism? Influence of the primary particle?

161 radiodetector stationsDense core: 150m spacingMedium dense: 250m spacingLarge spacing: 380m

Super-Hybrid: Radio + SD + FD

AERA status

First Antennas and central station deployed. Electronic and data acquisition chain not mounted yet. Next on-site operation after the (austral) winter. Central

Microwave R&D

- AMBER
- MIDAS
- EASIER

Event topology similar to fluorescence events Trigger concept: external or trigger from Auger

Conclusions

- Gianni's vision: Large acceptance with high precision is needed!
- Chalenging goal for the cosmic ray scientists!

Gianni working on Auger site