VHE GAMMA RAY ASTRONOMY PRESENT RESULTS AND FUTURE PROJECT

Max-Planck-Institute for Physics Masahiro Teshima

VHE Instruments

MILAGRO

MAGIC

TIBET

Imaging Air Cherenkov Light

50photons/m² (5 pe/m²) at 1TeV → MAGIC 2 x240 m², HESS 4 x106 m²

Typical parameters

Energy range50GeV ~ 10TeVCR rejection power >99%Angular resolution~0.1 degreesEnergy resolution~20%Detection area~105m²Sensitivity ~1% Crab Flux (10-13 erg/cm²s)

Physics objectives

SNRs

Pulsars and PWNe

Micro quasars X-ray binaries AGNs

Origin of cosmic rays

Dark matter

Space-time & relativity

Gamma-Ray Emission Processes(1) Astrophysical process

Gamma ray emission process from DM Annihilation

Dark Matter Annihilations

VHE Skymap

103 sources (42 Extragalactics + 61 Galactics) in July 2010 Blazars, FSRQs, FR-I, Starburst galaxies SNRs, PWNe, Pulsar, Binaries, un-IDs

GALACTIC SOURCES SNRS, PWNE

Great success!! HESS galactic plane

PWNe, SNRs, Binaries, un-IDs

HESS: Shell type SNRs(7) RX J1713, RX J0852, RCW86

XMM-Newton, HESS

SNR Study

VIE region

Color HESS observation Contour Suzaku X-Ray 80 - -39.5 0 -40 PSF 17h15m 17h10m Fermi

Concaved spectrum (non-linear effect)??

Shell type SNRs IC443(MAGIC J0616)

SNRs in different

Pulsar Wind Nebulae observation by

- Major galactic TeV source population
 - Associated with relatively young (<10⁵ year old) and energetic pulsars
- Generally believed that we see inverse Compton emission of 1-100 TeV electrons
- 1% of Spin-down energy goes to VHE gamma rays

Pulsar Wind Nebula HESS J1825-137

- Major galactic TeV source population
 Associated with relatively young (<10⁵ year
 - old) and energetic pulsars
- Generally believed that we see inverse
 Compton emission of 1-100 TeV electrons
- 1% of Spin-down energy goes to VHE gamma rays

 Clear evidence for cooling of electrons in the Nebula

Crab Nebula spectrum

Pulsar Study

MAGIC result: Published in Science in 2008

By measuring the spectrum around cutoff or at high energies is important to distinguish the emission model

Polar cap: double exponent Outer gap: simple exponent

Crab Pulsar

Cut off feature of Spectrum: Exponent or Power-Law

EXTRAGALACTIC

SOURCES

Number of extragalactic

Extra-galactic sources

42 sources (3 x FR-I, 2 x Starburst galaxies, 3 x FSRQs, 34 BL Lacs)

PKS 2155-304 Spectral Energy Distribution

 Time-averaged SED is well described by a single zone SSC model:

Highest energy electrons ($\gamma_e > 2 \times 10^5$) produce the X-ray emission, but contribute relatively little above 0.2 TeV

Mrk421 MWL SED

EBL (Extragalactic Background Light)

EBL upper limit by MAGIC and

M87 flare in 2008: MAGIC, VERITAS, HESS, VLBA

Model of 43GHz Radio flux using the measured VHE gamma flux

M87 flare in 2008: MAGIC, VERITA, HESS, and VLBA

Morphological studies of potential sources Cen A (3.4Mpc) & Cen B (56Mpc)

Distance: 3.8Mpc Flux: 0.8% in Crab Unit Spectral Index: -2.7

Cross: the best location (COG) Circle: 95% C.L. VHE extension limit

 $L_{VHE} \sim 2.6 \times 10^{39} \text{ erg s-1}$ $L_{UHECR} \sim 10^{40} \text{ erg s-1}$

Starburst galaxies NGC253 (by HESS), M82 (VERITAS)

119hrs, >220GeV, 247 photons, 0.6% Crab

137hr, >700GeV, 91photons, 0.9 % Crab

General picture of CR and

Lacki et al. 2010, arXiv:1003.3257

~23m telescopes 4 - 6° FoV 0.08 - 0.12° pixels Parabolic/Hybrid f/D~1.2

12m telescopes 7 - 8° FoV 0.16 - 0.18° pixels Hybrid f/D =1.35

4-7 m telescopes
8 - 10° FoV
0.2 - 0.3° pixels
DC or SO f/D 0.5-1.7

Possible array configuration

Configuration E: LST x 4, MST x 23, SST x 32

Kifune Plot (expectation from log S - log N)

Kifune Plot

CTA will deliver more

All sky observatory

One observatory with two sites operated by one consortium

Mainly extragalactic science

> Galactic plus extragalactic science

~ 50MEuro Canaries: La Palma, Tenerife 2400m Mexico: San Pedro Martir 2800m

~ 100MEuro Namibia: Kohmas Highland 1800m Chile: La Silla 2400m Argentina: El Leoncito 2600m Argentina: Puna Highland 3700m

Specification and Physics

Tentative time schedule

Zurich

Zeuthen

Padova Crakow

23m Large size telescope and 12m Middle size telescope

23m LST designed by MPI group

12m MST designed by DESY group

4-7m Small Size Telescope

Italian Design 7m

UK Design 4m

Recommendations and supports

ASPERA Roadmap Magnificent Seven

ASTRONET Roadmap

High Priority project Ground based projects

8 Infrastructures from Physics and eng

СТА	150
E-ELT	950
ELI	400
FAIR	1187
KM3NeT	200
PRINS	1400
SKA (GLOBAL)	1500
SPIRAL2	196

Decadal Survey in Astronomy and Astrophysics in US

Report Release e-Townhall Keck Center of the National Academies August 13, 2010

NATIONAL RESEARCH COUNCIL

Ground-based projects ranked in order: Large-scale

- Large Synoptic Survey Telescope (LSST)
- Innovations Program
- Giant Segmented Mirror Telescope (GSMT)
- Atmospheric Čerenkov Telescope Array (ACTA)

Summary

- The VHE gamma ray astronomy started with the discovery of VHE emission from Crab by Whipple observatory in 1989
- The third generation telescopes, HESS, MAGIC and VERITAS are increasing the number of VHE sources very rapidly (1-2 sources/months)

Types of sources

SNRs, Pulsar, PWNe, Binaries / BL Lacs, FSRQs, FR-I, Starburst Galaxies

Galactic sources: SNRs

- We can see several SNRs in different evolutionary stages with the different energy spectra
- Galactic sources: PWNe
 - Most popular galactic sources, asymetric morphologies, energy dependent morphology
- Nearby bright BL Lacs show the intensity variation of x 50
 - Mkn421, Mkn501, PKS2155
 - Very fast time variations of a few minutes are found in Mkn501 and PKS2155
- Distant sources:3c279, PKS1222
 - The room for the extra component (Pop-III) in EBL is now very slim
- CTA will develop further VHE gamma ray astronomy and give opportunities to

Dear Gianni

We regret very much for missing you.

You are a great scientist in the field of Cosmic Ray and Air shower physics. I have enjoyed the discussion with you on the detail of CR physics, the energy spectra, chemical compositions and anisotropy of cosmic rays. You are a very friendly colleague.

Our science is progressing day by day, and I believe you are watching what we are doing with a great interest. You passed away too young.

THANKS

THANKS

Fermi Gamma Ray satellite

Parameters

Energy range $30 \text{MeV} \sim 100 \text{GeV}$ Background freeAngular resolution $\sim 0.8 \text{ deg at 1GeV}$ Effective area $\sim 1 \text{m}^2$

The first LAT catalog (1FGL) Fermi 11 month data

11 month

LAT all-sky, log scale, E>200 MeV (front), E>400 MeV (back)

- >1000 sources for TS = 2 Δ log(likelihood) > 25 (~4 σ for 4 D.o.F.)
- Typical 95% error radius is 10'. Absolute accuracy is better than 1'

FSRQ 3C279 (z=0.536) MAGIC

redshift z

Possible New Classes of Sources in CTA

Galactic Diffuse

GRBs

UHECR Sources

Starburst galaxies Galaxy mergers

Clusters of galaxies

Dark Matter Annihilation

Summary

- VHE gamma ray astronomy started from the Crab detection ingis remarkable
- IACT 技術の熟成 → CTA == 究極の IACT Array
 - 国際協力による次世代のインフラの構築
 - 目指す性能:
 - Broad band: 20-30GeV ~ 100TeV
 - 感度10倍: 10mCrab → ~1mCrab
 - 角分解能3倍: 1~2 arcmin
- 高エネルギー天文学の今後
 - 未だ多くの謎、銀河系内外宇宙線起源、ジェットでの粒子加速 (例えば、短時間変動)
 - 高い時間分解能による フレアー時間変動
 - EBL の z 依存性
 - 新しいクラスの天体:パルサー、GRB、クラスター、未知天体、他
 - 基礎物理:相対論・量子重力効果、暗黒物質、宇宙論
- タイムスケジュール
 - 2010-2013プロトタイプ

Crab Nebula spectrum

10 GRBs observed by Fermi

→ 71 GeV (16.54s)

→ 59 GeV (0.829s)

→ 93 GeV (82s)

GRB090902B

of events

> 100 MeV

~10

>100

~10

_

~10

>10

>10

>150

_

>200

GRB

080825C

080916C

081024B

081215A

090217

090323

090328

090510

090626

090902B

duration

long

long

short

long

long

lona

lona

short

long

long

of events

> 1 GeV

0

>10

2

_

0

>0

_

>20

_

>30

delaved

HE onset

?

~

~

_

х

_

_

~

_

~

Lona-lived HE

emission

~

~

~

_

_

~

~

~

~

~

Highest

Energy

~600 MeV

~ 13.2 GeV

3 GeV

_

~1 GeV

_

_

~31 GeV

_

~ 33 GeV

Redshift

4.35

3.57

0.736

0.903

1.822

GRB090902B

RX J1713

SED and Strong B in the shell suggest Hadronic origin of VHE gammas

Galactic Center

EGRET Observation

Delayed component at High Energy It is not easy to explain by electron synchrotron mech.

Evidence of P synchrotron?

2 GeV photons

18GeV at T0+75mins

Summary

- 高エネルギーガンマ線天文学のめざましい発展

● IACT 技術の熟成 → CTA == 究極の IACT Array

● 国際協力による次世代のインフラの構築

● 目指す性能:

- Broad band: 20-30GeV ~ 100TeV
- 感度10倍: 10mCrab → ~1mCrab
- 角分解能3倍: 1~2 arcmin
- 高エネルギー天文学の今後
 - 未だ多くの謎、銀河系内外宇宙線起源、ジェットでの粒子加速 (例えば、短時間変動)
 - 高い時間分解能による フレアー時間変動
 - EBL の z 依存性
 - 新しいクラスの天体:パルサー、GRB、クラスター、未知天体、他
 - 基礎物理:相対論・量子重力効果、暗黒物質、宇宙論

タイムスケジュール

MAGIC Crab Nebula (PWN)

Blazar's Sequence

radio-loud

quasar

radio-quiet

quasar

0_{obs}

Source modeling

